NEW THERAPEUTIC APPROACHES IN THE MANAGEMENT OF CASTRATION RESISTANT PROSTATE CANCER

Ioannis K. Gkialas
Department of Urology, General Hospital of Athens, G. Gennimatas

Abstract

Building on decades of research, the past few years have yielded a near exponential increase in treatment modalities for patients with metastatic prostate cancer. Individually, these improvements in overall survival may appear modest, however, nearly all of them have a distinct mechanism of action and the possibility of synergistic effects have yet to be established. The promise of a durable impact on the mortality from metastatic prostate cancer will likely stem from further elucidation of molecular pathways involved in prostate cancer, as well as defining the optimal sequence of treatment for patients with metastatic prostate cancer.

A denocarcinoma of the prostate is the most common malignancy diagnosed in US men and the second leading cause of cancer related death with approximately 30,000 men succumbing to the disease in 2014. Primary therapy for localized disease consists of either surgical resection or radiation therapy, however, for patients with recurrent or metastatic prostate cancer, treatment consists of androgen deprivation therapy through depletion or blockage of circulating androgens. While initially effective, most men develop resistance as manifested by either clinical, radiographic or most commonly biochemical progression (increase in prostate-specific antigen despite “castrate” levels of testosterone). The development of castration resistant prostate cancer (CRPC) signals an inappropriate reactivation of the androgen receptor (AR) axis resulting in growth and proliferation. Further, targeting of the AR pathway, through either the disruption of adrenal production of androgens with abiraterone acetate, or inhibition of ligand binding using the second generation antiandrogen enzalutamide, results in increased survival for this population of men.

The greatest opportunity for curing prostate cancer occurs when a patient presents with early stage localized disease. Unfortunately, 10% - 20% of prostate cancer patients present with metastatic disease, and up to one-third of patients who present at an earlier stage will have disease recurrence despite surgical or radiotherapeutic treatment. In over 80% of men with
metastatic disease, primary androgen ablation leads to initial clinical improvement and reduction of serum PSA levels. However, almost all advanced metastatic cancers initially treated with androgen ablation will develop into castration resistant prostate cancer (CRPC), the major cause of morbidity and mortality death in these men. A significant number of medications have been recently approved for the treatment of CRPC. From 2004 until 2010 only docetaxel was approved for “androgen independent (hormone refractory) metastatic prostate cancer”, now referred to as metastatic CRPC (mCRPC). Historically, chemotherapy using docetaxel plus prednisone was the only therapy to demonstrate a survival advantage in advanced prostate cancer, making it the “gold standard therapy” in this disease state.

The first of these new drugs approved for mCRPC was an autologous immunotherapy, sipuleucel - T. Since that 2010 approval, there have been other agents with differing modes of action that have demonstrated increased survival in the setting of mCRPC. These include the hormonal agents, abiraterone acetate and enzalutamide, the chemotherapeutic agent cabazitaxel, and bone targeting agents such as the radioactive radium 223 dichloride. The efficacy of androgen deprivation therapy (ADT) is routinely based on achieving castrate levels of serum T, arbitrarily defined as T ≤ 20 or 50 ng/dL. However, tissue androgen measurements in men with either locally recurrent or metastatic castration resistant prostate cancer (CRPC) clearly demonstrate that prostate and tumor androgen concentrations remain well within the range capable activating the androgen receptor (AR).

Abiraterone

Mechanism of action

CYP17A1 is a single enzyme that catalyzes the sequential hydroxylase (required for cortisol synthesis) and lyase (required for adrenal androgen synthesis) steps that are required for conversion of C21 pregnenolone and progesterone precursors to the C19 adrenal androgens, DHEA and AED. Abiraterone acetate, an orally administered, rationally designed small molecule derived from the structure of pregnenolone, irreversibly inhibits both the hydroxylase and lyase activity of CYP17A with approximately 10 - fold greater potency than ketoconazole. Because adrenal inhibition of CYP17A results in blockade of glucocorticoid as well as adrenal androgen synthesis, abiraterone is co - administered with prednisone to ameliorate the secondary rise in adrenocorticotropic hormone (ACTH) that can lead to excess mineralocorticoid synthesis.

A number of phase I and II studies initially demonstrated that abiraterone suppresses serum androgen levels and achieves prostate - specific antigen (PSA) and clinical responses in chemotherapy naive and docetaxel - treated CRPC patients. Phase III studies in chemotherapy naïve (COU - AA - 302) and post - docetaxel treated men (COU - AA - 301) have confirmed these findings, resulting in FDA approval of abiraterone for men with metastatic CRPC either before or after treatment with chemotherapy.

In the post chemotherapy study (COU - AA - 301, 1195 men) the first interim analysis demonstrated a 3.9 month overall survival (OS) benefit for men receiving abiraterone, prompting the independent data monitoring committee (IDMC) to recommend the study be unblinded and men on the placebo arm be offered abiraterone. All secondary endpoints were statistically significant in favor of abiraterone, including median time to PSA progression (8.5 months versus 6.6 months), median radiologic progression - free survival (rPFS, 5.6 months versus 3.6 months), and proportion of patients with > 50% PSA response (29.5% versus 5.5%).

In the pre - chemotherapy study (COU - AA - 302, 1088 men), at a median follow up of 22.2 months abiraterone doubled rPFS from 8.3 months to 16.5 months (HR 0.53, p < 0.001), accompanied by a trend for increased OS from 27.3 months in the placebo arm to not - reached in the abiraterone group (HR 0.75, p = 0.01 which did not meet the prespecified p value of 0.001), again prompting the IDMC to recommend the study be unblinded and men on the placebo arm be offered abiraterone. All secondary endpoints were statistically significant in favor of abiraterone, including median time to PSA progression (25.2 months versus 16.8 months), time to performance status decline (12.3 months versus 10.9 months), and proportion of patients with > 50% PSA response (62% versus 24%).

Abiraterone is generally well tolerated, with 13% and 19% of abiraterone - treated patients in COU - AA - 301 and COU - AA - 302 (respectively) discontinuing therapy for adverse effects versus 18% and 23% of
placebo-treated patients. The most common adverse events in both groups were fatigue, back pain, nausea, constipation, bone pain and arthralgia, all in the range of 25%-30%.

While clinical responses to abiraterone have been remarkable, not all patients respond and the majority ultimately progress with a rising PSA indicating reactivation of AR signaling²¹. Interestingly, recent case reports describe instances of an ‘abiraterone withdrawal syndrome,’ in which (generally transient) PSA declines occur following discontinuation of abiraterone, suggesting that mutations in the AR which can allow AR activation by exogenous corticosteroids may play a role²²,²³. Numerous studies evaluating the sequencing and combination of abiraterone with immunotherapy, chemotherapy and other AR targeted agents in multiple disease settings are underway.

Enzalutamide

Enzalutamide is an oral potent inhibitor of the androgen receptor (AR) signaling pathway, with actions including inhibition of ligand/receptor binding, nuclear translocation of activated androgen receptor, and inhibition of AR regulated nuclear transcription²⁴.

In an early trial, enzalutamide demonstrated antitumor effects irrespective of chemotherapy status²⁵. In the subsequent phase 3 AFFIRM trial, enzalutamide significantly prolonged the survival of men with mCRPC after docetaxel chemotherapy and showed favorable results for all secondary endpoints²⁵. More recently, enzalutamide significantly improved overall survival in men with chemotherapy-naïve mCRPC in the phase III, PREVAIL trial²⁵.

The international randomized phase III AFFIRM trial was conducted in 15 countries at 156 sites 11. A total of 1199 patients with progressive mCRPC were randomized in a 2:1 manner to enzalutamide 160 mg daily (n= 800) or placebo (n= 399). A planned interim analysis demonstrated a significant improvement in the primary endpoint of OS. Median OS was 18.4 months among patients receiving enzalutamide and 13.6 months among patients receiving placebo, an incremental benefit of 4.8 months. The hazard ratio for death was 0.63 (p < 0.001), indicating there was a 37% decrease in the risk of death compared with placebo. The superiority of enzalutamide over placebo was further shown for all secondary endpoints, including the time to PSA progression 8.3 versus 3.0 months; hazard ratio 0.25; p < 0.001; and rPFS 8.3 versus 2.9 months; hazard ratio 0.40; p < 0.001.

The PREVAIL study was a multinational, double-blind, randomized, placebo-controlled, phase 3 trial of enzalutamide. A total of 1,717 patients were enrolled in the study, with 872 in the enzalutamide group and 845 in the placebo group. Coprimary end points were radiographic progression-free survival and overall survival. Secondary end points included the time until the initiation of cytotoxic chemotherapy, the time until the first skeletal-related event, the best overall soft-tissue response, the time until PSA progression, and a decline in the PSA level of 50% or more from baseline²⁵.

In the PREVAIL study were involving men with metastatic prostate cancer who had not received previous chemotherapy, enzalutamide extended the time until radiographic progression or death, improved overall survival, and delayed the initiation of chemotherapy by a median of 17 months. The benefit of enzalutamide on radiographic progression-free survival was observed from the first assessment 2 months after randomization and conferred a relative reduction of 81% in the risk of progression or death.

Enzalutamide significantly reduced the risk of death by 29% over placebo, even though patients in the placebo group had received effective post-progression therapy more frequently and earlier than those in the enzalutamide group. The benefit of enzalutamide was observed as early as 4 months after randomization and was maintained throughout the study²⁵. Overall, enzalutamide 160 mg orally daily was well tolerated by patients compared with the placebo control. Although the period of observation for the enzalutamide arm was more than twice that for the placebo group, the rates of AEs were similar in the two treatment arms. Overall there was a higher incidence of all grades of fatigue, diarrhea, hot flashes, musculoskeletal pain, and headache in the enzalutamide arm compared with placebo. Cardiac disorders were noted in 6% of patients receiving enzalutamide and in 8% of patients receiving placebo²⁶,²⁷.

Sipuleucel-T

Sipuleucel-T represents the first “personalized” immunotherapy for the treatment of cancer using a patient’s own immune cells to overcome the self...
New therapeutic approaches in the management of castration resistant prostate cancer p. 28 - 34

- tolerance hurdle for the treatment of tumors. It is also important to stress that sipuleucel - T is not a gene therapy, since APCs are loaded with a purified recombinant protein and are not genetically manipulated or transfected with any form of viral or recombinant DNA or RNA. PAP was chosen as the target antigen for the prostate cancer treatment because it is expressed at detectable levels in more than 95% of prostate adenocarcinomas and is highly specific to prostate tissue.

Principles of cancer immunotherapy
Cancer is considered an immunosuppressive state that requires an intervention to boost adaptive immunity, including the antigen - specific defense mechanism. One of the key characteristics of cancer pathogenesis is the ability of the tumor cell to avoid immune destruction.

Active immunotherapy often referred to as “vaccine therapy” is designed to elicit a host immune response that specifically targets the tumor cell through a T - cell response cascade. Active immunotherapy requires the target antigen to be processed in a manner capable of inducing an immune response that generates anti - tumor activity. T - cells do not respond to soluble or naked protein antigens but rather require peptide fragments from the antigen to be “presented” to them on the surface of antigen - presenting cells (APCs) via human leukocyte antigen (HLA) molecules.

Prostate cancer as a target for immunotherapy
Training the host immune system to reject its own developing tumor has been a long unrealized dream. A variety of strategies were attempted in the past to stimulate an immune response in the prostate but none proved successful.

The prostate is a highly differentiated, gender - specific organ and prostate adenocarcinoma offers a variety of suitable antigen targets for cancer immunotherapy. Many genes within the prostate are transcriptionally regulated by the androgen receptor and show highly regulated expression mostly restricted to the prostate gland or prostate cancer tissue. Included among such expressed genes are PSA, prostatic acid phosphatase (PAP), prostate - specific membrane antigen (PSMA), and prostate stem - cell antigen (PSCA).

Clinical evidence for immunotherapy with sipuleucel - T
Two early phase III randomized, double - blind, placebo - controlled trials with sipuleucel - T, (trials D9901 and D9902A) comparing sipuleucel - T to placebo in men with asymptomatic, mCRPC demonstrated significantly prolonged survival. However, these smaller initial trials were combined for an initial FDA filing which led to the need to initiate a larger randomized, double - blind, placebo - controlled Phase III clinical registration trial known as the IMPACT study (Immunotherapy for Prostate AdenoCarcinoma Treatment) (D9902B).

Briefly, in the 512 patient IMPACT study, the median OS was 25.8 months for men receiving sipuleucel - T and 21.7 months for patients who were treated with placebo (p= 0.03), a survival advantage of 4.1 months while possessing a relatively benign safety profile. Adverse events seen more often in sipuleucel - T treated patients than in those receiving placebo included predominantly chills, fatigue, and pyrexia that were Grade 1 or 2 in severity and of short duration (1 or 2 days), resulting in minimal discontinuation of treatment (< 2%).

The use of PSA in the setting of sipuleucel - T requires some clarification. PSA responses may not be observed in patients who have favorable overall survival benefit form sipuleucel - T. In an exploratory analysis of the IMPACT trial, the greatest magnitude of benefit with sipuleucel - T treatment was seen in patients with better baseline prognostic factors, and in particular those with lower baseline PSA values. This suggests that patients with less advanced disease may benefit the most from sipuleucel - T treatment.

Routine mCRPC follow up care is indicated after sipuleucel - T therapy. Patients and clinicians should be made aware that PSA may not be used as a definitive marker for response following immunotherapy. There is no consensus as to when patient should be reimaged, and that the median time to second treatment on the IMPACT study was 6 months driven primarily by imaging studies. Combining sipuleucel - T with other agents and further study of the optimum sequencing of immunotherapy will continue for the next few years.

Radium 223 dichloride
Prostate cancer frequently metastasizes to the bone primarily within the axial skeleton (vertebral bodies, pelvis, ribs, and skull) but may also occur in the long
Radiographically, osseous metastases are most often noted on 99m technetium methylene diphosphonate bone scintigraphy scans. However, newer modalities such as 18F sodium fluoride PET and 18F fluorodeoxyglucose PET are more frequently being utilized given their increased sensitivity for detection. Clinically, bone metastases are the primary cause of morbidity and mortality for men with metastatic CRPC, with 80% - 90% of patients eventually developing metastatic disease. Bone lesions may cause pain or skeletal related events such as spinal cord compression, fractures, or hypercalcemia.

The current radiopharmaceutical agents used against metastatic prostate cancer include strontium - 89, samarium - 153, rhenium - 186, and radium 223. Historically, primary outcomes included pain response, decrease in analgesic consumption, and quality - of - life. Radium 223 is the first radiopharmaceutical agent to demonstrate improved survival among patients with symptomatic bone - metastatic CRPC. An α particle consist of two protons and two neutrons, a β particle is a high energy electron, while a γ ray is described as ionizing electromagnetic radiation. Each type of radiation has different advantages and disadvantages.

Alpha particles have the shortest range of these particle types, resulting in a dense deposition of energy close to the origin of the particle emission. Alpha particles can be stopped by a sheet of paper, eliminating the need for any radiation shielding. Radium 223, as an alpha emitter, administered intravenously requires no radiation safety precautions such as particular sleeping arrangements, limited time or specified distance from children or pregnant women.

Radium 223 was recently approved by the FDA in 2013 for the management of men with metastatic castrate resistant prostate cancer after the publication of a randomized phase III trial which showed an overall survival benefit. The phase III placebo controlled trial randomized 922 men with symptomatic bone - metastatic CRPC using a 2:1 ratio to receive six injections every 4 weeks of either radium 223 (50 kBq/kg) or placebo. Entry criteria included at least two bone metastases without visceral metastases and either prior docetaxel treatment or inability to receive docetaxel. The primary endpoint was overall survival, with secondary endpoints of time to first SRE, time to alkaline phosphatase progression, alkaline - phosphatase response, alkaline - phosphatase normalization, time - to - PSA - progression, safety, and quality - of - life. Median survival was significantly increased from 11.2 months to 14.0 months with a hazard ratio of 0.695 in favor of radium 223. In addition, there was significant improvement in median time to SRE (13.6 months versus 8.4 months), time to alkaline phosphatase progression, and time to PSA progression (hazard ratio 0.671) favoring the treatment arm. Adverse events (AEs) were determined for any man who received > 1 injection in 762 patients. AEs were observed in 88% of the radium 223 patients and 94% of placebo - treated patients. Serious AEs were higher in the placebo group (43% versus 55%) and treatment discontinuation due to AEs was higher in the placebo group (13% versus 20%). Grade 3/4 hematologic toxicities were comparable between the two arms (neutropenia 3% versus 1%, thrombocytopenia 6% versus 2%, anemia 13% versus 13%). Given, that radium 223 is excreted via the intestinal system, which can manifest as diarrhea, nausea or vomiting, careful monitoring of the patient’s oral intake and fluid status is crucial to prevent dehydration.

Radium 223 is the first radiopharmaceutical to provide a prolongation in overall survival in men with castration resistant prostate cancer. The safety profile of radium 223 is encouraging, in comparison to the β emitters, which may allow for increased dosing (phase I study planned), integration with myelosuppressive chemotherapy (NCT01106352, phase I/IIa study of safety and efficacy of radium 223 with docetaxel in patients with bone metastasis from castration resistant prostate cancer), or novel AR targeting agents (phase I study planned with enzalutamide and abiraterone acetate).
New therapeutic approaches in the management of castration resistant prostate cancer p. 28 - 34

Conclusion
With the rapid introduction of multiple new agents, the lack of clarity regarding the optimal integration of these drugs into the management paradigm of patients with advanced prostate cancer is unsurprising. Other drugs such as cabozantonib, ipilimumab and custirsen are in late stage evaluation and may in the near term add to the armamentarium and quandary of managing patients with advanced prostate cancer.

Η ανάπτυξη των νέων προσεγγίσεων στη διαχείριση του προχωρημένου μεταστατικού καρκίνου του προστάτη έχει σημειώσει μεγάλη πρόοδο τα τελευταία χρόνια. Οι βασικές θεραπείες στέρησης ανδρογόνων (ADT) έχουν τελειοποιηθεί και πολλοί νέοι παράγοντες έχουν εγκριθεί από το 2010 για τη θεραπεία τόσο του μεταστατικού όσο και του ευνουχοάντοχου καρκίνου του προστάτη (mCRPC). Η κατανόηση της θεωρίας αυτών των νέων παραγόντων και η εστιασμένη προσεγγίση τους σε πρακτικές κλινικές εφαρμογές είναι απαραίτητες για τη βελτίωση των θεραπευτικών αποτελεσμάτων. Καθώς η αντιμετώπιση αυτών των ασθενών με προχωρημένη νόσο γίνεται πλέον πολυδιάστατη και η χρήση αυτών των παραγόντων επεκτείνεται σε ουρολόγους, ογκολόγους και ακτινοθεραπευτές θα πρέπει ολοι να γίνουν πιο εξοικειωμένοι με τις νέες θεραπευτικές επιλογές.

Περίληψη

References

New therapeutic approaches in the management of castration resistant prostate cancer p. 28 – 34

16. de Bono JS. Abiraterone acetate improves survival in metastatic castration-resistant prostate cancer: Phase III results. 2010 European Society for Medical Oncology; Milan; 2010.

